Comparison of solar-induced chlorophyll fluorescence, light-use efficiency, and process-based GPP models in maize

PRADEEP WAGLE,1 YONGGUANG ZHANG,2,3,4,6 CUI JIN,1 AND XIANGMING XIAO1,5

1Department of Microbiology and Plant Biology, Centre for Spatial Analysis, University of Oklahoma, Norman, Oklahoma 73019 USA
2Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, 210023 Nanjing, China
3Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, 210023 Nanjing, China
4Remote Sensing Section, Helmholtz Center Potsdam, GFZ German Research Center for Geosciences, Telegrafenberg A17, 14473 Potsdam, Germany
5Institute of Biodiversity Science, Fudan University, Shanghai, 200433 China

Abstract. Accurately quantifying cropland gross primary production (GPP) is of great importance to monitor cropland status and carbon budgets. Satellite-based light-use efficiency (LUE) models and process-based terrestrial biosphere models (TBMs) have been widely used to quantify cropland GPP at different scales in past decades. However, model estimates of GPP are still subject to large uncertainties, especially for croplands. More recently, space-borne solar-induced chlorophyll fluorescence (SIF) has shown the ability to monitor photosynthesis from space, providing new insights into actual photosynthesis monitoring. In this study, we examined the potential of SIF data to describe maize phenology and evaluated three GPP modeling approaches (space-borne SIF retrievals, a LUE-based vegetation photosynthesis model [VPM], and a process-based soil canopy observation of photochemistry and energy flux [SCOPE] model constrained by SIF) at a maize (Zea mays L.) site in Mead, Nebraska, USA. The result shows that SIF captured the seasonal variations (particularly during the early and late growing season) of tower-derived GPP (GPP_EC) much better than did satellite-based vegetation indices (enhanced vegetation index [EVI] and land surface water index [LSWI]). Consequently, SIF was strongly correlated with GPP_EC than were EVI and LSWI. Evaluation of GPP estimates against GPP_EC during the growing season demonstrated that all three modeling approaches provided reasonable estimates of maize GPP, with Pearson’s correlation coefficients (r) of 0.97, 0.94, and 0.93 for the SCOPE, VPM, and SIF models, respectively. The SCOPE model provided the best simulation of maize GPP when SIF observations were incorporated through optimizing the key parameter of maximum carboxylation capacity (V_{cmax}). Our results illustrate the potential of SIF data to offer an additional way to investigate the seasonality of photosynthetic activity, to constrain process-based models for improving GPP estimates, and to reasonably estimate GPP by integrating SIF and GPP_EC data without dependency on climate inputs and satellite-based vegetation indices.

Key words: maize phenology; SCOPE; SIF; vegetation indices; VPM.

INTRODUCTION

It is important to accurately estimate cropland gross primary production (GPP) due to its key role in the global food security and carbon budgets (Peters et al. 2007). In particular, the corn belt of the midwestern USA supplies 40% and 35% of global annual maize (Zea mays L.) and soybean (Glycine max L.) productions, respectively (FAO 2013), and thus plays an important role in the annual carbon balance of North America (Peters et al. 2007). Different approaches of GPP estimations have been developed in past decades. One main approach is the use of satellite-based production efficiency models (PEMs) that are developed based on the light-use efficiency (LUE) concept (Monteith 1972). Formulation of the LUE-based PEMs to estimate GPP is as follows:

$$GPR = PAR \times FPAR \times LUE,$$

where LUE is the efficiency with which the absorbed photosynthetically active radiation (PAR) is used in photosynthesis and FPAR is the fraction of absorbed PAR by vegetation. LUE is generally tabulated with invariant values associated to plant functional types, then attenuated by temperature and water stressors under limiting environmental conditions. An estimation of LUE from remote sensing is still challenging (Hilker
PRADEEP WAGLE ET AL.

Enhanced vegetation index (EVI) or considered EVI as a function of PAR absorbed by vegetation canopy (FPAR_canopy) based LUE models. The first group uses the fraction FPAR concepts, there are two typical groups of satellite-remote sensed vegetation indices. Based on different remote sensing data, there are several GPP models. The first global retrievals of SIF from the Greenhouse gases Observing Satellite (GOSAT; Frankenberg et al. 2011, Joiner et al. 2011, Zeng et al. 2014). Compared to reflectance-based satellite data (e.g., MODIS-PSN), SIF can track spring onset and autumn decline of photosynthesis more closely in different biomes. Zhang et al. (2014) demonstrated that key parameters for photosynthesis modeling, such as the maximum carboxylation capacity (V_cmax) can be derived from space-borne SIF data and the SCOPE model, which could improve GPP estimates. Similar to the fundamental estimation of GPP based on the LUE concept (Monteith 1972), SIF is conceptualized as

\[\text{SIF} = \text{PAR} \times \text{FPAR} \times \text{LUE}_f, \]

where LUE_f is the light-use efficiency for fluorescence. Obviously, both SIF and GPP are related to the flux of absorbed light (APAR or FPAR) with which it is used for vegetation photosynthesis.

Another main approach to estimate GPP at different temporal and spatial scales is to use process-based terrestrial biosphere models (TBMs; Sellers et al. 1997). TBMs generally represent physiological, biophysical, and biogeochemical processes in a mechanistic way of photosynthesis, respiration, and canopy energy balance (Sellers et al. 1997), and they require more inputs, most importantly meteorological, soil, and land cover information. Most of these models rely on C_3 and C_4 photosynthesis models (Farquhar et al. 1980, Collatz et al. 1992) to estimate GPP. The soil canop y observation of photochemistry and energy flux (SCOPE) model belongs to this group and can be used to simulate carbon, water vapor, and heat fluxes (Van der Tol et al. 2009a).

It has recently been shown that space-borne sun-induced chlorophyll fluorescence (SIF) observations offer new possibilities for monitoring photosynthesis from space (Frankenberg et al. 2011, Guanter et al. 2014). Chlorophyll fluorescence is an electromagnetic emission in the 650–800 nm range originating at the core of photosynthetic machinery. The first global retrievals of SIF from the Greenhouse gases Observing Satellite (GOSAT; Frankenberg et al. 2011, Joiner et al. 2011, Guanter et al. 2012) and later from the Global Ozone Monitoring Experiment-2 (GOME-2; Joiner et al. 2013) enable the establishment of a direct link between remotely sensed SIF and GPP of terrestrial ecosystems. A recent empirical study showed the ability of space-borne SIF to monitor crop photosynthesis at regional and global scales and to correct existing underestimations by LUE models like MODIS-PSN (Guanter et al. 2014). Compared to reflectance-based satellite data (e.g., MODIS-PSN), Joiner et al. (2014) showed that SIF can track spring onset and autumn decline of photosynthesis more closely in different biomes. Zhang et al. (2014) demonstrated that key parameters for photosynthesis modeling, such as the maximum carboxylation capacity (V_cmax) can be derived from space-borne SIF data and the SCOPE model, which could improve GPP estimates. Similar to the fundamental estimation of GPP based on the LUE concept (Monteith 1972), SIF is conceptualized as

\[\text{SIF} = \text{PAR} \times \text{FPAR} \times \text{LUE}_f, \]

where LUE_f is the light-use efficiency for fluorescence. Obviously, both SIF and GPP are related to the flux of absorbed light (APAR or FPAR) with which it is used for vegetation photosynthesis.

The improved GPP estimation could not only benefit crop yield forecast for a wide range of public and private sectors, but also help better understanding the role of croplands in global carbon budgets and atmospheric CO_2 seasonal cycle (Peters et al. 2007, Gray et al. 2014, Zeng et al. 2014).
Materials and Methods

Site descriptions and flux data

Three AmeriFlux crop sites, located at the University of Nebraska-Lincoln Agricultural Research and Development Center near Mead, Nebraska, USA, were used in this study. Site 1 (USNe1) is irrigated continuous maize, and site 2 (USNe2) and site 3 (USNe3) are planted in maize-soybean rotations. The difference between USNe2 and USNe3 sites is the USNe2 site is irrigated and the USNe3 site is a rainfed agricultural system. Detailed site information can be found in previous studies (Verma et al. 2005, Suyker and Verma 2012). To determine landscape homogeneity of the study area, MODIS products for land cover type (MCD12C1; Friedl et al. 2010) and EVI (MOD13C2; Huete et al. 2002) with spatial resolution of 0.05 degrees were used. It was found that more than 90% of the GOME-2 pixel area around the Mead flux tower sites corresponded to croplands and the standard deviation of EVI was less than 0.1. Thus, we assumed landscape homogeneity within the GOME-2 grid, even though the footprint size of the flux tower (<1 km²) does not match the coarse resolution of GOME-2. This assumption of landscape homogeneity could lead to biases to some extent in the comparison. However, using the same SIF and flux dataset, previous studies demonstrated good performance of this assumption (Guanter et al. 2014, Zhang et al. 2014).

Half-hourly carbon flux and meteorological data from three study sites for the period of 2007–2011 were obtained from the AmeriFlux website (available online). We used flux data only for the maize growing years for USNe2 and USNe3 sites. Flux data were gap-filled and partitioned using the tool eddy covariance gap-filling and flux-partitioning tool from the Max Planck Institute for Biogeochemistry (MPI-BGC; available online). The net ecosystem CO₂ exchange (NEE) was partitioned into GPP (GPP_EC) and ecosystem respiration (Reichstein et al. 2005).

GOME-2 SIF data

We used SIF data for the study period (2007–2011) from GOME-2 instrument onboard Eumetsat’s MetOp-A platform. GOME-2 has a sun-synchronous orbit and samples near 09:30 local time. GOME-2 measures in the 240–790 nm spectral range with a relatively high spectral resolution between 0.2 and 0.5 nm and a nominal footprint of 40 × 80 km². SIF retrievals are based on the inversion of top-of-atmosphere measurements in the 715–758 nm windows that overlap SIF emission. The retrieval method disentangles the contribution of atmospheric absorption and scattering, surface reflectance, and fluorescence to the measured top-of-atmosphere radiance spectra. Details of the retrieval of SIF from GOME-2 measurements can be found in Joiner et al. (2013) in which an effective cloud fraction of <0.4 was used to filter and quality control. Details about the effects of cloud on fluorescence measurements can be found in previous studies (Joiner et al. 2013, 2014). The retrievals are quality-filtered and binned in 0.5° latitude-longitude grid boxes (Joiner et al. 2014).

Space-borne SIF values were extracted based on the coordinates of the flux tower and averaged to an 8-d period to match 8-d composites of MODIS data set, when at least five SIF retrievals were available within each 8-d period. Due to the coarse resolution of GOME-2 grid, we actually extracted the same SIF values for the three maize sites. GPP_EC data from USNe2 and USNe3 sites were used to derive an empirical linear model between GPP_EC and SIF during the growing season (Fig. 1). This GPP-SIF relationship was used to estimate GPP (GPP_SIF) for the USNe1 site. The predicted GPP (GPP_SIF) for the USNe1 site was evaluated against GPP_EC. For comparison, we also estimated GPP using VPM and SCOPE models (GPP_VPM and GPP_SCOPE, respectively) for the USNe1 site.

Percentage of maize cropland within a MODIS pixel (500 m) and a 0.5 × 0.5 degree grid

To show the changes in proportion of croplands (maize and soybean) for the MODIS and GOME-2 grid pixels that cover the flux tower, we used the United States Department of Agriculture Cropland Data Layer (CDL) dataset for the study period (2007–2011) and aggregated 60-m data into 500-m and 0.5× 0.5 degree grid cells, respectively. Within the MODIS and GOME-2 grid pixels, vegetation cover was dominated by maize and soybean (Table 1).
MODIS pixel (%) & Total cultivated & GOME-2 (%) & Total cultivated \\
& & & & \\
Year & Maize & Soybean & cultivated & Maize & Soybean & cultivated \\
2007 & 90.91 & 0.00 & 90.91 & 36.04 & 28.36 & 65.68 \\
2008 & 82.43 & 4.05 & 94.59 & 32.88 & 36.50 & 85.60 \\
2009 & 90.91 & 0.00 & 92.42 & 37.24 & 31.41 & 85.30 \\
2010 & 87.03 & 3.35 & 97.91 & 36.64 & 34.97 & 87.50 \\
2011 & 48.95 & 43.04 & 97.89 & 40.30 & 32.83 & 87.67 \\

MODIS data

The surface reflectance 8-d L3 Global 500-m product (MOD09A1) for the study sites were extracted from the data portal of the Earth Observation and Modeling Facility, the University of Oklahoma (available online) using the geo-location coordinate of each flux tower.9 A pixel-based quality assurance (QA) control was applied to generate a less noisy time series dataset by removing the noise of low quality, cloud, and aerosol contaminated pixels (Xiao et al. 2005). Eight-day composite values of EVI (Huete et al. 2002) and LSWI (Xiao et al. 2004) were calculated. The MOD15A2 FPAR product, a standard 8-d FPAR canop product for EOS-MODIS (Myneni et al. 2002), and the standard MODIS GPP product (GPP_MODIS), just for the comparison with other GPP estimates, were downloaded from the Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) website (data available online).10 APAR canop and APAR chl were calculated by multiplying FPAR canop and FPAR chl (equivalent to EVI in this study) with PAR, which was measured at the flux sites. To determine the start and end dates of the maize growing season, we chose a threshold of LSWI ≥ 0.1 and GPP_EC ≥ 1 g C·m⁻²·d⁻¹ for the study sites according to Kalfas et al. (2011). For SIF and EVI, we fitted Savitsky-Golay functions using TIMESAT software to estimate onset and end of the growing season (Jönsson and Eklundh 2004).

VPM and input parameters

VPM estimates GPP as

\[\text{GPP}_{\text{VPM}} = \varepsilon_g \times \text{FPAR}_{\text{chl}} \times \text{PAR}, \]

where \(\varepsilon_g \) is light-use efficiency (LUE, g C/mol photosynthetic photon flux density [PPFD]), \(\text{FPAR}_{\text{chl}} \) is fraction of PAR absorbed by chlorophyll, and PAR is photosynthetically active radiation. VPM uses EVI as \(\text{FPAR}_{\text{chl}} \). While the detailed description of VPM has been provided previously (Xiao et al. 2004, Wagle et al. 2014), we briefly summarize it here.

The VPM employs down-regulating scalars (ranging from 0 to 1) to characterize the effects of temperature \(T_{\text{scalar}} \) and water stress \(W_{\text{scalar}} \) on the LUE \(\varepsilon_g \) as

\[\varepsilon_g = \varepsilon_0 \times T_{\text{scalar}} \times W_{\text{scalar}}, \]

where \(\varepsilon_0 \) is the apparent quantum yield or maximum light use efficiency (g C/mol PPFD). A theoretical \(\varepsilon_0 \) value of 1.5 g C/mol PPFD was used in this study, as reported in a previous study (Kalfas et al. 2011). \(T_{\text{scalar}} \) was calculated at each time step as in the terrestrial ecosystem model (Raich et al. 1991) as

\[T_{\text{scalar}} = \frac{(T - T_{\text{min}})(T - T_{\text{max}})}{[(T - T_{\text{min}})(T - T_{\text{max}})] - (T - T_{\text{opt}})^2}, \]

where \(T \) is the air temperature and \(T_{\text{min}}, T_{\text{max}}, \) and \(T_{\text{opt}} \) represent the minimum, maximum, and optimum temperatures for photosynthesis, respectively. \(T_{\text{min}}, T_{\text{max}}, \) and \(T_{\text{opt}} \) were set to 10°C, 48°C, and 28°C, respectively, as in Kalfas et al. (2011). LSWI was used to account for the effect of water stress on photosynthesis as

\[W_{\text{scalar}} = \frac{1 + \text{LSWI}}{1 + \text{LSWI}_{\text{max}}}, \]

where \(\text{LSWI}_{\text{max}} \) is the maximum LSWI within the plant growing season.

SCOPE model and input parameters

The SCOPE model is a vertical (1D) biophysical model that couples radiative transfer of optical and thermal radiation with the leaf biochemical process (Van der Tol et al. 2009a). The biochemical components for C₃ and C₄ plants are based on Collatz et al. (1991, 1992). It simulates within-canopy vertical heat flux distribution, the hyperspectral outgoing radiances (Verhoeof and Bach 2007), and the photosynthesis of C₃ or C₄ vegetation. It describes sun-canopy-observer geometry and leaf orientation to consider different biophysical processes for sunlit and shaded components. The novelty of SCOPE is that it couples a leaf-level chlorophyll fluorescence model (Van der Tol et al. 2009b) with a leaf biochemical model to calculate top-of-canopy chlorophyll fluorescence. Radiative transfer of chlorophyll fluorescence is

9 http://eomf.ou.edu/visualization/

10 http://daac.ornl.gov/MODIS/
calculated using a module similar to the FluorSAIL model (Miller et al. 2005), but one that allows leaf fluorescence to vary depending on position and orientation in the canopy. A leaf-level biochemical model calculates 400–700 nm range fluorescence from the absorbed fluxes, canopy temperature, and ambient vapor, and CO₂ and O₂ concentrations in conjunction with GPP, stomatal resistance, and the energy balance of the leaf (Van der Tol et al. 2009b). The model calculates radiative transfer in a multilayer canopy as a function of the solar zenith angle and leaf orientation to simulate fluorescence in the observation direction. More details of this model can be found in Van der Tol et al. (2009a). We used a recent version of SCOPE (v1.52) in this study.

Running SCOPE for photosynthesis and fluorescence requires inputs of meteorological forcing (incoming shortwave and long-wave radiation, air temperature and pressure, humidity, wind speed, and CO₂ concentration), LAI, leaf angle distribution, leaf chlorophyll content (C_{ab}), stomatal conductance parameter (m), and maximum carboxylation capacity (V_{cmax}). Meteorological inputs and LAI for SCOPE were available from the site measurements. Leaf angle distribution was assumed to be spherical, which is a good approximation in crops such as maize (Verhoef and Bach 2007). An estimation of C_{ab} controlling the leaf and canopy radiative transfer was

Fig. 2. Seasonal dynamics of (a) net ecosystem CO₂ exchange (NEE) and gross primary production (GPP), and (b) enhanced vegetation index (EVI), land surface water index (LSWI), sun-induced chlorophyll fluorescence (SIF), and GPP at the USNe1 site during 2007–2011.

<table>
<thead>
<tr>
<th>Year</th>
<th>Start</th>
<th>Peak</th>
<th>End</th>
<th>Start</th>
<th>Peak</th>
<th>End</th>
<th>Start</th>
<th>Peak</th>
<th>End</th>
<th>Start</th>
<th>Peak</th>
<th>End</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>25 May</td>
<td>19 Jul</td>
<td>22 Sep</td>
<td>25 May</td>
<td>5 Aug</td>
<td>30 Sep</td>
<td>5 May</td>
<td>1 Aug</td>
<td>30 Sep</td>
<td>5 May</td>
<td>1 Aug</td>
<td>30 Sep</td>
</tr>
<tr>
<td>2008</td>
<td>1 Jun</td>
<td>7 Oct</td>
<td>24 May</td>
<td>13 Jul</td>
<td>10 Jun</td>
<td>29 Sep</td>
<td>5 Aug</td>
<td>1 Aug</td>
<td>30 Sep</td>
<td>5 May</td>
<td>1 Aug</td>
<td>30 Sep</td>
</tr>
<tr>
<td>2011</td>
<td>2 Jun</td>
<td>30 Sep</td>
<td>29 Sep</td>
</tr>
</tbody>
</table>

Table 2. Start, peak, and end dates of maize growing season during 2007–2011 at the USNe1 site based on tower-based gross primary production (GPP), land surface water index (LSWI), enhanced vegetation index (EVI), and sun-induced chlorophyll fluorescence (SIF).
inverted from vegetation indices (EVI and MERIS terrestrial chlorophyll index, MTCI (Dash and Curran 2004)), and seasonal V_{cmax} was inverted from GOME-2 SIF measurements as described in Zhang et al. (2014). The SCOPE model was constrained by optimizing the key parameter of V_{cmax} by combining with GOME-SIF data, as discussed in Zhang et al. (2014). The SCOPE was first run in forward mode, and a link between canopy SIF and V_{cmax} was derived as a look-up table. Then, SIF retrievals from GOME-2 were used to derive V_{cmax} for the crop flux site. The optimized V_{cmax} values are seasonally varied, characterized with peak in the mid-growing season (see Fig. 4 in Zhang et al. 2014). Other parameters of the SCOPE model, such as reflectance and transmittance of vegetation and soil, were set to default values.

RESULTS

Consistency of maize phenology observed by seasonal dynamics of GPP, LSWI, EVI, and SIF

To examine the consistency of maize phenology, seasonal dynamics of NEE, GPP, LSWI, EVI, and SIF from 2007 to 2011 at the USNe1 site is presented in Fig. 2. Crop photosynthesis started around late May or early June with a rapid rise in NEE and GPP and ended in late September with NEE and GPP approaching zero (Fig. 2a). Both LSWI and SIF started to increase in late May to early June, indicating the beginning of the growing season (Fig. 2b, Table 2). SIF peaked in late July and declined to low values by late September to early October, which is consistent with the trends of GPP and NEE. LSWI peaked around two weeks later than GPP and SIF (Table 2). EVI shows consistently earlier onset and later senescence of maize (Fig. 2b and Table 2). We also noted that EVI was generally above 0.1 in the spring and autumn due to the effects of soil and snow when...
there was no photosynthetic activity, while SIF values were approximately zero (Fig. 2b). These results illustrate that SIF was much better at capturing seasonal variations (particularly during early and late season) in GPP compared with remotely sensed vegetation indices (LSWI and EVI). As a result, SIF showed a stronger linear relationship with GPP_EC ($R^2 = 0.88$) than did LSWI ($R^2 = 0.69$) and EVI ($R^2 = 0.83$) when relationships of GPP_EC with SIF, EVI, and LSWI were compared during the growing season at the USNe1 site (Fig. 3).

Seasonal dynamics of APAR_canopy and APAR_chl were compared with the seasonal dynamics of SIF during 2007–2011 in Fig. 4. The APAR_chl was generally lower than the APAR_canopy. Overall, SIF tracked seasonal dynamics of both APAR_canopy and APAR_chl well. However, APAR_canopy showed earlier springtime rise and later autumn decline and also a slightly longer growing season across years when compared with SIF (Fig. 4b), while APAR_chl time series showed more consistent seasonality with SIF (Fig. 4a). Consequently, a stronger linear relationship was found between APAR_chl and SIF ($R^2 = 0.92$ and RMSE=0.51) than between APAR_canopy and SIF ($R^2 = 0.86$ and RMSE=0.65; Fig. 5). The results indicate that SIF is more related to photosynthetic components of chlorophyll-containing foliage in the canopy (here FPAR_canopy) than the entire canopy (here FPAR_canopy * MOD15A2 FPAR), which is composed of both photosynthetic (mostly green leaves) and non-photosynthetic (mostly senescent foliage and stems) parts of vegetation.

Comparison of GPP predicted by VPM, SCOPE, and SIF models

Comparison of seasonal dynamics of GPP_EC, GPP_VPM, GPP_SCOPE, GPP_SIF, and GPP_MODIS during the 2007–2011 growing season at the USNe1 site shows that GPP_VPM, GPP_SCOPE, and GPP_SIF tracked the magnitude and seasonal dynamics of GPP_EC well (Fig. 6). This is also supported by strong positive relationships ($R^2 = 0.87–0.95$) of GPP_EC with GPP_VPM, GPP_SCOPE, and GPP_SIF (Fig. 7). However, GPP_MODIS was substantially lower compared to other GPP estimates and GPP_EC and showed a poor correlation with GPP_EC ($R^2 = 0.47$). These results illustrated good performance of all three approaches, which were significantly improved compared to the standard MOD17 GPP algorithm in estimating maize GPP. Among those three approaches, SCOPE and SIF slightly underestimated maize GPP, while VPM slightly overestimated it when they were compared to GPP_EC. Our results show that SCOPE model showed the best performance (RMSE = 1.58 g C/m²/d and $R^2 = 0.95$) than did VPM (RMSE = 2.27 g C/m²/d and $R^2 = 0.91$) and SIF (RMSE = 2.72 g C/m²/d and $R^2 = 0.87$). Seasonal sums of GPP_EC, GPP_VPM, GPP_SCOPE, and GPP_SIF over the growing season for the USNe1 site are provided in Table 3. On an average, the percentage of relative error (% RE) ranged from 6.3% for VPM to −4.3% for SCOPE and −5.5% for SIF during 2007–2011. For SCOPE and SIF approaches, GPP estimations were especially low in 2008 (−12.4% and
Vegetation indices have often been used to identify crop phenology for cropland management and productivity estimation (Churkina et al. 2005, Fisher et al. 2006, Jans et al. 2010, Wagle et al. 2015). Recently, space-borne SIF observations have provided an alternative way to monitor photosynthesis from space (Frankenberg et al. 2011, Guanter et al. 2014). In this current study, the comparison of vegetation indices, including EVI and LSWI, and SIF with tower-based CO₂ flux showed the consistency of SIF in characterizing the start and end dates of the maize growing season at the USNe1 site (Fig. 2 and Table 2). It was also found that SIF showed a stronger relationship with GPP_EC ($R^2 = 0.88$) than did EVI ($R^2 = 0.83$) and LSWI ($R^2 = 0.69$; Fig. 3). Results show that EVI performed poorly in describing maize phenology.

Table 3. Annual sums of tower-based gross primary production (GPP_EC) and predicted GPP by VPM (GPP_VPM), SCOPE (GPP_SCOPE), and sun-induced chlorophyll inflorescence (GPP_SIF) at the USNe1 site during the maize growing season.

<table>
<thead>
<tr>
<th>Year</th>
<th>GPP_EC</th>
<th>GPP_VPM</th>
<th>RE</th>
<th>GPP_SCOPE</th>
<th>RE</th>
<th>GPP_SIF</th>
<th>RE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>1754.3</td>
<td>1844.2</td>
<td>5.1</td>
<td>1685.9</td>
<td>−3.9</td>
<td>1659.1</td>
<td>−5.4</td>
</tr>
<tr>
<td>2008</td>
<td>1703.7</td>
<td>1697.4</td>
<td>−0.4</td>
<td>1491.7</td>
<td>−12.4</td>
<td>1343.8</td>
<td>−21.1</td>
</tr>
<tr>
<td>2009</td>
<td>1840.0</td>
<td>2014.6</td>
<td>9.5</td>
<td>1711.9</td>
<td>−7.0</td>
<td>1790.6</td>
<td>−2.7</td>
</tr>
<tr>
<td>2010</td>
<td>1566.0</td>
<td>1769.7</td>
<td>13.0</td>
<td>1640.1</td>
<td>4.7</td>
<td>1574.3</td>
<td>0.5</td>
</tr>
<tr>
<td>2011</td>
<td>1578.1</td>
<td>1643.8</td>
<td>4.2</td>
<td>1530.0</td>
<td>−3.0</td>
<td>1598.0</td>
<td>1.3</td>
</tr>
</tbody>
</table>

Notes: Unit is in g C/m². RE (%) is relative error of GPP_VPM, GPP_SCOPE, and GPP_SIF compared to GPP_EC.

−21.1%, respectively), while VPM overestimated GPP estimates by 13% in 2010.

Discussion

Vegetation indices have often been used to identify crop phenology for cropland management and productivity estimation (Churkina et al. 2005, Fisher et al. 2006, Jans et al. 2010, Wagle et al. 2015). Recently, space-borne SIF observations have provided an alternative way to identify crop phenology for cropland management and productivity estimation (Churkina et al. 2005, Fisher et al. 2006, Jans et al. 2010, Wagle et al. 2015).
phenology (Fig. 2b), consistent with the finding of a previous study (Richardson et al. 2012). SIF also showed a slightly earlier onset of the growing season as compared with the GPP_EC (Fig. 2b). This can be attributed to the spatial differences of GOME-2 footprint and flux tower footprint. The larger footprints of GOME-2 SIF probably contained more than one crop and other vegetation types. However, considering the fact that GOME-2 sensors are not yet optimized for SIF measurements, our results demonstrate that space-borne SIF can provide an additional way to investigate the seasonality of photosynthetic activity of maize.

The comparison of SIF with APAR_canopy and APAR_chl suggested that SIF is more related to PAR absorbed by photosynthetic components of maize canopy (Figs. 4 and 5). Assuming a constant LUE in canopy photosynthesis for crops in Eq. 2 (Ruimy et al. 1996), variations of canopy chlorophyll fluorescence are dependent on APAR_chl for maize. Hence, though SIF measured from space is the amount of photons that are re-emitted from the whole canopy, Figs. 4 and 5 suggest that SIF is more driven by photosynthetic components of canopy because only the PAR absorbed by photosynthetic pigments (APAR_chl) drives leaf photosynthesis and chlorophyll fluorescence. The PAR absorbed by non-photosynthetic components (e.g., senescent foliage, branches, stems, and litter) cannot be used in carbon assimilation and chlorophyll fluorescence generation processes. The MOD15A2 FPAR product utilizes reflectance from the whole vegetation canopy, including the influence of non-photosynthetic components (Zhang et al. 2005, 2009), resulting in slightly overestimation of the actual APAR (Fig. 4) and weaker relationship between FPAR_canopy and SIF than between FPAR_chl and SIF (Fig. 5). It should be noted that, as in this study, EVI has been used to estimate or replace FPAR_chl in several studies (Xiao et al. 2004, Gitelson et al. 2006, Sims et al. 2008). Recently, it has been shown that other vegetation indices such as MTCI had a slightly stronger linear relationship with FPAR_chl than did EVI and NDVI due to its accurate representation of canopy chlorophyll content (Ogutu and Dash 2013). More direct retrieval of FPAR_chl has emerged from MODIS reflectance data and a radiative transfer model (Zhang et al. 2005, 2009), showing more consistent results with CO2 flux for cropland and broadleaf forest sites (Cheng et al. 2014). These improved products can be used for further analysis in the future.

The performance of the three GPP modeling approaches (VPM, SCOPE, and SIF) was highly consistent in their predictions of seasonal dynamics and magnitudes of GPP as compared with GPP_EC (Fig. 6). Consequently, there were strong positive relationships between predicted GPPs and GPP_EC (Fig. 7) and discrepancies of the seasonal sums of predicted GPPs and GPP_EC were small (RE < ±10% in most cases; Table 3). The underestimation for SCOPE and SIF approaches in 2008 was due to the lower SIF value in 2008 because the persisted wet and cool weather in spring 2008 (the Midwest flood) had delayed maize planting in this area (Hatfield 2012). However, maize was still planted on schedule (April 29) at the Mead site (USNe1). Because of the spatial mismatch between GOME-2 and flux tower footprints, SIF might not reflect the flux tower conditions well in this condition. Among three approaches, the process-based SCOPE model showed the best performance by constraining the \(V_{cmax} \) parameter derived from satellite retrievals of SIF. Space-borne SIF observations can be used to retrieve the seasonal variability of \(V_{cmax} \) for maize and soybean (Zhang et al. 2014). Their results showed that incorporation of seasonally varying \(V_{cmax} \) through SIF improved the modeling of GPP and LUE for both C3 and C4 crops compared to an invariant \(V_{cmax} \) used in the SCOPE model. The consistency of GPP estimates by SCOPE and other two approaches in this study highlights the use of SIF for the benchmarking of process-based TMBs. Our results illustrate that space-borne SIF can be used not only to constrain process-based models for improving GPP predictions but also to develop empirical relationships with GPP_EC (as shown in Fig. 1) to accurately estimate and extrapolate GPP over large maize cropland areas.

Our results show that the standard MOD17 GPP product significantly underestimated GPP for this high productive maize site (Fig. 6), consistent with the findings of previous studies in croplands (Chen et al. 2011, Guanter et al. 2014, Zhang et al. 2014, Wagle et al. 2015). The main reason for such significant underestimation is that the MOD17 GPP algorithm assumes only one crop type in the biome properties look-up table (BPLUT; Running et al. 2004) and uses a maximum crop LUE of 0.30 g C/mol PPFD for both C3 and C4 crops, which is substantially smaller than the values for both maize (C4 type) and soybean (C3 type; Cheng et al. 2014, Zhang et al. 2014, Wagle et al. 2015). Hence, even though the MOD17 GPP algorithm utilizes an overestimation of in-situ FPAR from the MODIS FPAR product (FPAR_canopy), it is not enough to offset too low prescribed maximum LUE (Heinsch et al. 2006, Wagle et al. 2014), which leads to underestimation of GPP.

Conclusions

Considering large uncertainties associated with current GPP models, especially for croplands (Huntzinger et al. 2012, Schaefer et al. 2012), there is a pressing need for additional data to constrain the GPP model estimates. In this study, we evaluated the ability of three different approaches (LUE-based VPM, process-based SCOPE, and space-borne SIF) to estimate GPP at a maize site in Mead, Nebraska, USA. Overall, all three approaches captured seasonal dynamics and magnitude of maize GPP well as compared with GPP_EC, and they were significantly improved compared to the MOD17 GPP product. Our results illustrate that, by integrating with GPP_EC, space-borne SIF can provide reasonable estimates of maize GPP without using additional
information such as climate inputs and satellite-based vegetation indices which are required by the process-based (SCOPE) and satellite-based LUE (VPM) models, and data-oriented diagnostic techniques based on the FLUXNET network of tower sites and remote sensing vegetation indices (Jung et al. 2011). Furthermore, space-borne SIF data not only can provide an additional way to investigate the seasonality of photosynthetic activity of maize, but also can constrain process-based GPP models for improving GPP estimates. It should be noted that the assumption of homogenous landscape within the footprint of GOME-2 is tenuous and we acknowledge the inherent difficulties to compare it with relatively small spatial scale of flux tower measurements. With the launch of the Orbiting Carbon Observatory-2 (OCO-2) (Frankenberg et al. 2014) in 2014 and the Sentinel-5 Precursor (TROPOMI; Veefkind et al. 2012) satellite missions in 2016, availability of a higher spatial resolution more space-borne SIF data would be more helpful to address this issue. In addition, whether our evaluations hold beyond the maize considered in this study is a question for future research to address, and an additional work is needed to expand this analysis to other crop types such as C3 crops (soybean and wheat) for a cross-site comparison.

Acknowledgments

This work was supported by the Thousand Young Talents Program in China and the National Science Foundation of China (#41371070) to Y. Zhang, and the USDA National Institute for Food and Agriculture (#2013-69002) and the National Science Foundation (#41371070) to Y. Zhang, and the USDA National Institute for Food and Agriculture. Food and Agriculture Organization of the United Nations, Rome.

Data Availability

Data associated with this paper have been deposited in Dryad: http://dx.doi.org/10.5061/dryad.64n47